amides

1. Derivatives of oxoacids $R_k E(=O)_l(OH)_m$ ($l \neq 0$) in which an acidic hydroxy group has been replaced by an amino or substituted amino group. Chalcogen replacement analogues are called thio-, seleno- and telluro-amides. Compounds having one, two or three acyl groups on a given nitrogen are generically included and may be designated as primary, secondary and tertiary amides, respectively, e.g.

benzamide,

$$H_3C-S-N$$
O
 CH_3
O
 CH_3

N,*N*-dimethylmethanesulfonamide,

$$R \xrightarrow{\mathsf{H}} 0 \qquad 0 \qquad \mathsf{R}$$

secondary amides (see imides),

$$\begin{array}{c|c}
R & O \\
R & N & R \\
O & O
\end{array}$$

tertiary amides,

Notes:

- 1. Amides with NH₂, NHR and NR₂ groups should not be distinguished by means of the terms primary, secondary and tertiary.
- 2. Derivatives of certain acidic compounds $R_nE(OH)_m$, where E is not carbon (e.g. sulfenic acids, RSOH, phosphinous acids, R_2POH) having the structure $R_nE(NR_2)_m$ may be named as amides but do not belong to the class amides proper, e.g. $CH_3CH_2SNH_2$ ethanesulfenamide or ethylsulfanylamine.
- 2. The term applies also to metal derivatives of ammonia and amines, in which a cation replaces a hydrogen atom on nitrogen. Such compounds are also called azanides, e.g.

$$\bigvee^{Li}_{I}$$

lithium diisopropylamide, synonym lithium diisopropylazanide.

See also: carboxamides, lactams, peptides, phosphoramides, sulfonamides

Source:

PAC, 1995, 67, 1307 (Glossary of class names of organic compounds and reactivity intermediates based on structure (IUPAC Recommendations 1995)) on page 1315

See also:

PAC, 1993, 65, 1357 (Revised nomenclature for radicals, ions, radical ions and related species (IUPAC Recommendations 1993)) on page 1357