current density

The current density $j_{\rm B}$ of a species **B** in a given point of the solution is obtained by multiplying the flux density of that species at the given point by the Faraday constant *F* and by the charge number $z_{\rm B}$ of the species:

$$\boldsymbol{j}_{\mathbf{B}} = \boldsymbol{z}_{\mathbf{B}} F \boldsymbol{N}_{\mathbf{B}}$$

where $j_{\rm B}$ is a vector which indicates the direction in which the charges transported by the species **B** flow and which gives the number of these charges going through a plane oriented perpendicular to the vector, divided by time and by area, and $N_{\rm B}$ is the flux density of a minor constituent of the solution with respect to a fixed frame of reference. *See also:* electric current density

Source:

PAC, 1981, 53, 1827 (Nomenclature for transport phenomena in electrolytic systems) on page 1833