least-squares technique

A procedure for replacing the discrete set of results obtained from an experiment by a continuous function. It is defined by the following. For the set of variables y, x_0 , x_1 , ... there are *n* measured values such as y_i , x_{0i} , x_{1i} , ... and it is decided to write a relation:

$$y = f(a_0, a_1, ..., a_K; x_0, x_1, ...)$$

where $a_0, a_1, ..., a_K$ are undetermined constants. If it is assumed that each measurement y_i of y has associated with it a number w_i^{-1} characteristic of the uncertainty, then numerical estimates of the $a_0, a_1, ..., a_K$ are found by constructing a variable S, defined by

$$S = \sum_{i} (w_i (y_i - f_i))^2,$$

and solving the equations obtained by writing

$$\frac{\partial S}{\partial a_j} \tilde{a}_j = 0$$

 $\tilde{a}_j = \text{all } a \operatorname{except} a_j$. If the relations between the *a* and *y* are linear, this is the familiar least-squares technique of fitting an equation to a number of experimental points. If the relations between the *a* and *y* are non-linear, there is an increase in the difficulty of finding a solution, but the problem is essentially unchanged.

Source:

PAC, 1981, 53, 1805 (Assignment and presentation of uncertainties of the numerical results of thermodynamic measurements (Provisional)) on page 1822