mass distribution ratio, \(k_{\textrm{MEKC}}\)

https://doi.org/10.1351/goldbook.MT06928
Defined as: \[k_{\textrm{MEKC}} = \frac{n_{\textrm{mc}}}{n_{\textrm{aq}}} = K\cdot \frac{V_{\textrm{mc}}}{V_{\textrm{aq}}}\] where \(n_{\textrm{mc}}\) and \(n_{\textrm{aq}}\) are the chemical amounts of the @A00331@ in the micellar and aqueous phases, respectively, \(K\) is the @D01813@ and \(V_{\textrm{mc}}\) and \(V_{\textrm{aq}}\) are the corresponding volumes of the phases.
Notes:
  1. In the case of an electrically neutral analyte, \(k_{\textrm{MEKC}}\) can be calculated directly from the @M03920@ times: \[k_{\textrm{MEKC}} = \frac{t_{\textrm{m}} - t_{\textrm{eo}}}{t_{\textrm{eo}}} \left ( 1 - \frac{t_{\textrm{m}}}{t_{\textrm{mc}}} \right )\]
  2. \(k_{\textrm{MEKC}}\) should not be confused with the retention factor (in @C01182@) \(k\). However, \(k_{\textrm{MEKC}}\) is analogous to the @E02305@ (in @C01075@).
Source:
PAC, 2004, 76, 443. (Terminology for analytical capillary electromigration techniques (IUPAC Recommendations 2003)) on page 449 [Terms] [Paper]