spectral overlap

In the context of radiative energy transfer, the integral, $J = \int\limits_0^\infty f_{\rm D}^{'}(\sigma) \, \varepsilon_{\rm A}(\sigma) {\rm d}\sigma$, which measures the overlap of the emission spectrum of the excited donor, D, and the absorption spectrum of the ground state acceptor, A; $f_{\rm D}^{'}$ is the measured normalized emission of D, $f_{\rm D}^{'} = \frac{f_{\rm D}(\sigma)}{\sum\limits_{m=0}^\infty f_{\rm D}(\sigma) {\rm d}\sigma}$, $f_{\rm D}(\sigma)$ is the photon exitance of the donor at wavenumber

 σ , and $\varepsilon_{\rm A}(\sigma)$ is the decadic molar absorption coefficient of A at wavenumber σ . In the context of Förster excitation transfer, J is given by:

$$J = \int_{0}^{\infty} \frac{f_{\mathrm{D}}^{'}(\sigma) \, \varepsilon_{\mathrm{A}}(\sigma)}{\sigma^{4}} \mathrm{d}\sigma$$

In the context of Dexter excitation transfer, J is given by:

$$J = \int_{0}^{\infty} f_{\mathrm{D}}(\sigma) \, \varepsilon_{\mathrm{A}}(\sigma) \mathrm{d}\sigma$$

In this case $f_{\rm D}$ and $\varepsilon_{\rm A}$, the emission spectrum of donor and absorption spectrum of acceptor, respectively, are both normalized to unity, so that the rate constant for energy transfer, $k_{\rm ET}$, is independent of the oscillator strength of both transitions (contrast to Förster mechanism).

See: energy transfer

Source:

PAC, 1996, 68, 2223 (Glossary of terms used in photochemistry (IUPAC Recommendations 1996)) on page 2275