isomorphous structures Also contains definition of: enantiomorphous structures *in polymers*

in polymers

In the crystalline state, polymer chains are generally parallel to one another but neighbouring chains of equivalent conformation may differ in chirality and/or orientation. Chains of identical chirality and conformation are isomorphous. Chains of opposite chirality but equivalent conformation are enantiomorphous. For example, two ...TG⁺TG⁺TG⁺... helices of isotactic poly(propylene) are isomorphous. Isotactic poly(propylene) chains of the ...TG⁺TG⁺TG⁺TG⁺... and ...G⁻TG⁻TG⁻T... types are mutually enantiomorphous. With regard to orientation, consider a repeating side group originating at atom A_1^i , the first atom of the side group being B_{α}^i . For certain chain symmetries (helical, for instance) the bond vectors $\vec{\mathbf{b}}(A_1^i, B_{\alpha}^i)$ have the same components (positive or negative) $\frac{\vec{\mathbf{b}} \cdot \vec{\mathbf{c}}}{|\vec{\mathbf{c}}|}$ along the *c* axis for every *i*.

Two equivalent (isomorphous or enantiomorphous) chains in the crystal lattice, having identical components of the bond vectors along c, both positive or both negative, are designated isoclined; two equivalent chains having bond vectors along c of the same magnitude but opposite sign are designated anticlined.

Source: Purple Book, p. 43

IUPAC Compendium of Chemical Terminology