photon exposure, H_p

Photon irradiance, E_p , integrated over the time of irradiation for a beam <u>incident</u> from all <u>upward</u> directions. SI unit is m⁻².

Notes:

- 1. Mathematical definition: $H_p = \int_t E_p dt$. If the photon irradiance is constant over the time interval, $H_p = E_p t$.
- 2. This term refers to a beam <u>not scattered or reflected</u> by the target or its surroundings. For a beam incident from <u>all directions</u> photon fluence $(H_{p,o}, F_{p,o})$ is an equivalent term.
- 3. This quantity can be used on a chemical amount basis by dividing H_p by the Avogadro constant, the symbol then being $H_{n,p}$, the name 'photon exposure, amount basis', SI unit is mol m⁻²; common unit is einstein m⁻².

Source:

PAC, 2007, 79, 293 (Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006)) on page 394