photon irradiance, E_p Number of photons (quanta of radiation, $N_{\rm p}$) per time interval (photon flux), $q_{\rm p}$, incident from all <u>upward</u> directions on a small <u>element of surface</u> containing the point under consideration divided by the area of the element. SI unit is m⁻² s⁻¹. Equivalent definition: Integral, taken over the hemisphere visible from the given point, of the expression $L_{\rm p}\cos\theta$ d Ω the photon radiance at the given point in the various directions of the incident beam of solid angle Ω and θ the angle between any of these beams and the normal to the surface at the given point. ## Notes: - 1. Mathematical definition: $E_p = dq_p/dS$. If the photon flux is constant over the surface considered, $E_p = q_p/S$. Equivalent definition: $E_p = \int_{2\pi} L_p \cos\theta d\Omega$. - 2. This term refers to a beam <u>not scattered or reflected</u> by the target or its surroundings. For a beam incident from <u>all directions</u> photon fluence rate $(E_{p,o})$ is an equivalent term. - 3. This quantity can be used on a chemical amount basis by dividing E_p by the Avogadro constant, the symbol then being $E_{n,p}$, the name 'photon irradiance, amount basis', SI unit is mol m⁻² s⁻¹; common unit is einstein m⁻² s⁻¹. ## Source: PAC, 2007, 79, 293 (Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006)) on page 396