radiance, L

Radiant power, P, <u>leaving or passing through</u> a small transparent element of surface in a given direction from the source about the solid angle Ω , divided by the solid angle and by the orthogonally projected area of the element in a plane normal to the given beam direction, $dS_{\perp} = dS \cos \theta$

Notes:

1. Mathematical definition:

$$L = \frac{\mathrm{d}^2 P}{\mathrm{d}\Omega \, \mathrm{d}S_{\perp}} = \frac{\mathrm{d}^2 P}{\mathrm{d}\Omega \, \mathrm{d}S \cos \theta}$$

for a <u>divergent</u> beam propagating in an elementary cone of the solid angle Ω containing the direction θ . SI unit is W m⁻² sr⁻¹.

- 2. For a <u>parallel</u> beam it is the radiant power, P, of all wavelengths <u>leaving or passing through</u> a small element of surface in a given direction from the source divided by the orthogonally projected area of the element in a plane normal to the given direction of the beam, θ . Mathematical definition in this case: $dP/(dS\cos\theta)$ If the radiant power is constant over the surface area considered, $P/(S\cos\theta)$. SI unit is W m⁻².
- 3. Equivalent to $L = \int_{\lambda} L_{\lambda} d\lambda$, where L_{λ} is the spectral radiance at wavelength λ .

Source:

PAC, 2007, 79, 293 (Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006)) on page 408