rotational diffusion coefficient

Defined by the equation:

$$D_{\theta} = \frac{t_{\theta}}{\frac{\partial (f(\theta, \Phi))}{\partial \theta} \sin \theta}$$

where $f(\theta, \Phi) \sin \theta \, d\theta \, d\Phi$ is the fraction of particles whose axes make an angle between θ and $\theta + d\theta$ with the direction $\theta = 0$, and have an azimuth between Φ and $\Phi + d\Phi$; $t_{\theta} \, d\Phi$ is the fraction of particles having an azimuth between Φ and $\Phi + d\Phi$ whose axis passes from values $< \theta$ to values $> \theta$ in unit time. The axis whose rotational diffusion is considered has to be clearly indicated.

Source:

PAC, 1972, 31, 577 (Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry) on page 617